Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Reprod Toxicol ; 109: 109-120, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35304307

RESUMO

Residential and occupational exposures to the industrial solvents perchloroethylene (PERC) and trichloroethylene (TCE) present public health concerns. In humans, maternal PERC and TCE exposures can be associated with adverse birth outcomes. Because PERC and TCE are biotransformed to toxic metabolites and placental dysfunction can contribute to adverse birth outcomes, the present study compared the toxicity of key PERC and TCE metabolites in three in vitro human placenta models. We measured cell viability and caspase 3 + 7 activity in the HTR-8/SVneo and BeWo cell lines, and caspase 3 + 7 activity in first trimester villous explant cultures. Cultures were exposed for 24 h to 5-100 µM S-(1,2-dichlorovinyl)-L-cysteine (DCVC) and S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC), or 5-200 µM trichloroacetate (TCA) and dichloroacetate (DCA). DCVC significantly reduced cell viability and increased caspase 3 + 7 activity in HTR-8/SVneo cells at a lower concentration (20 µM) compared with concentrations toxic to BeWo cells and villous explants. Similarly, TCVC reduced cell viability and increased caspase 3 + 7 activity in HTR-8/SVneo cells but not in BeWo cells. TCA and DCA had only negligible effects on HTR-8/SVneo or BeWo cells. This study advances understanding of potential risks of PERC and TCE exposure during pregnancy by identifying metabolites toxic in placental cells and tissues.


Assuntos
Tetracloroetileno , Tricloroetileno , Cisteína/metabolismo , Feminino , Humanos , Placenta/metabolismo , Gravidez , Solventes , Tetracloroetileno/metabolismo , Tetracloroetileno/toxicidade , Tricloroetileno/toxicidade
2.
Arch Toxicol ; 95(5): 1595-1619, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33725128

RESUMO

Trichloroethylene (TCE) is an industrial solvent and widespread environmental contaminant. Although TCE exposure is prevalent, epidemiological studies of TCE exposure associations with adverse birth outcomes are inconclusive. Prior studies show that the TCE metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) exhibits toxicity in a placental cell line. In the current study, genome-wide gene expression and gene set enrichment analyses were used to identify novel genes and pathway alterations in the HTR-8/SVneo human trophoblast cell line and human placental villous explants treated with DCVC at concentrations relevant to human exposures. In the cells, concentration- and time-dependent effects were observed, as evidenced by the magnitude of altered gene expression after treatment with 20 µM DCVC versus 10 µM, and 12-h versus 6-h of treatment. Comparing the two models for the transcriptional response to 12-h 20 µM DCVC treatment, no differentially expressed genes reached significance in villous explants, whereas 301 differentially expressed genes were detected in HTR-8/SVneo cells compared with non-treated controls (FDR < 0.05 + LogFC > 0.35 [FC > 1.3]). GSEA revealed five upregulated enriched pathways in common between explants and cells (FDR < 0.05). Moreover, all 12-h DCVC treatment groups from both models contained upregulated pathways enriched for genes regulated by the ATF4 transcription factor. The overrepresentation of ATF4 regulation of differentially expressed genes indicated activation of the integrated stress response (ISR), a condition triggered by multiple stress stimuli, including the unfolded protein response. DCVC-induced ISR activation was confirmed by elevated eIF2α phosphorylation, ATF4 protein concentrations, and decreased global protein synthesis in HTR-8/SVneo cells. This study identifies a mechanism of DCVC-induced cytotoxicity by revealing the involvement of a specific stress signaling pathway.


Assuntos
Solventes/toxicidade , Tricloroetileno/toxicidade , Fator 4 Ativador da Transcrição , Linhagem Celular , Células Cultivadas , Cisteína , Fator de Iniciação 2 em Eucariotos , Feminino , Humanos , Túbulos Renais Proximais , Placenta , Gravidez , Trofoblastos
3.
Reproduction ; 160(1): 31-37, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272450

RESUMO

Placental extravillous trophoblast remodeling of the uterine spiral arteries is important for promoting blood flow to the placenta and fetal development. Heparin-binding EGF-like growth factor (HB-EGF), an EGF family member, stimulates differentiation and invasive capacity of extravillous trophoblasts in vitro. Trophoblast expression and maternal levels of HB-EGF are reduced at term in women with preeclampsia, but it is uncertain whether HB-EGF is downregulated earlier when it may contribute to placental insufficiency. A nonhuman primate model has been established in which trophoblast remodeling of the uterine spiral arteries is suppressed by shifting the rise in estrogen from the second to the first trimester of baboon pregnancy. In the present study, we used this model to determine if placental HB-EGF is altered by prematurely elevating estrogen early in baboon gestation. Uterine spiral artery remodeling and placental expression of HB-EGF and other EGF family members were assessed on day 60 of gestation in baboons treated with estradiol (E2) daily between days 25 and 59 of gestation (term = 184 days). The percentages of spiral artery remodeling were 90, 84 and 70% lower (P < 0.01), respectively, for vessels of 26-50, 51-100 and >100 µm diameter in E2-treated compared with untreated baboons. HB-EGF protein quantified by immunocytochemical staining/image analysis was decreased three-fold (P < 0.01) in the placenta of E2-treated versus untreated baboons, while amphiregulin (AREG) and EGF expression was unaltered. Therefore, we propose that HB-EGF modulates the estrogen-sensitive remodeling of the uterine spiral arteries by the extravillous trophoblast in early baboon pregnancy.


Assuntos
Estrogênios/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Útero/metabolismo , Animais , Feminino , Papio , Gravidez
4.
Eur J Med Genet ; 62(8): 103690, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31226440

RESUMO

Prenatal testing for fetal genetic traits and risk of obstetrical complications is essential for maternal-fetal healthcare. The migration of extravillous trophoblast (EVT) cells from the placenta into the reproductive tract and accumulation in the cervix offers an exciting avenue for prenatal testing and monitoring placental function. These cells are obtained with a cervical cytobrush, a routine relatively safe clinical procedure during pregnancy, according to published studies and our own observations. Trophoblast retrieval and isolation from the cervix (TRIC) obtains hundreds of fetal cells with >90% purity as early as five weeks of gestation. TRIC can provide DNA for fetal genotyping by targeted next-generation sequencing with single-nucleotide resolution. Previously, we found that known protein biomarkers are dysregulated in EVT cells obtained by TRIC in the first trimester from women who miscarry or later develop intrauterine growth restriction or preeclampsia. We have now optimized methods to stabilize RNA during TRIC for subsequent isolation and analysis of trophoblast gene expression. Here, we report transcriptomics analysis demonstrating that the expression profile of TRIC-isolated trophoblast cells was distinct from that of maternal cervical cells and included genes associated with the EVT phenotype and invasion. Because EVT cells are responsible for remodeling the maternal arteries and their failure is associated with pregnancy disorders, their molecular profiles could reflect maternal risk, as well as mechanisms underlying these disorders. The use of TRIC to analyze EVT genomes, transcriptomes and proteomes during ongoing pregnancies could provide new tools for anticipating and managing both fetal genetic and maternal obstetric disorders.


Assuntos
Aborto Espontâneo/diagnóstico , Aborto Espontâneo/genética , Diagnóstico Pré-Natal , Trofoblastos/metabolismo , Movimento Celular/genética , Colo do Útero/metabolismo , Feminino , Doenças Fetais/diagnóstico , Doenças Fetais/genética , Doenças Fetais/patologia , Feto/metabolismo , Genoma Humano/genética , Humanos , Fenótipo , Gravidez , Primeiro Trimestre da Gravidez , Trofoblastos/patologia
5.
Biol Reprod ; 100(1): 217-226, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30084919

RESUMO

Heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF) is expressed in the embryo and uterus at the implantation site, stimulating trophoblast invasive activity essential for placentation. The effect of extraembryonic HBEGF deficiency on placental development was investigated by breeding mice heterozygous for the Hbegf null mutation. On gestation day 13.5, the average placental weights of the wild-type (Hbegf+/+) and heterozygous (Hbegf+/-) mice were approximately 76 and 77 mg, respectively, as opposed to reduced average placental weights of approximately 61 mg in homozygous null (Hbgef-/-) females. In contrast, fetal weights were not significantly affected by genotype. HBEGF immunostaining in placental sections was Hbegf gene dosage-dependent, while expression of other EGF family members was comparable in Hbegf+/+ and Hbegf-/- placentas. Histological analysis revealed no apparent differences in trophoblast giant cells, but the spongiotrophoblast region was reduced compared to labyrinth (P < 0.05) in Hbegf null placentas. While no differences in cell apoptosis were noted, proliferation as assessed by nuclear Ki67 staining was elevated in the labyrinth and decreased in the spongiotrophoblast region of Hbegf-/- placentas. Labyrinth morphology appeared disrupted in Hbegf -/- placentas stained with laminin, a marker for capillary basement membrane, and the capillary density was reduced. Immunohistochemical staining revealed reduced vascular endothelial growth factor (VEGF) levels in both spongiotrophoblast and labyrinth (P < 0.01) regions of Hbegf-/- placentas. In vitro, HBEGF supplementation increases the expression of VEGF in a human trophoblast cell line. These findings suggest that trophoblast HBEGF promotes placental capillary formation by inducing VEGF in the developing placenta of mice.


Assuntos
Membranas Extraembrionárias/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Doenças Placentárias/genética , Placentação/genética , Animais , Linhagem Celular , Membranas Extraembrionárias/irrigação sanguínea , Feminino , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/deficiência , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica/genética , Placenta/irrigação sanguínea , Placenta/metabolismo , Placenta/patologia , Doenças Placentárias/patologia , Placentação/fisiologia , Gravidez , Trofoblastos/metabolismo , Trofoblastos/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Biol Reprod ; 100(2): 479-494, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137220

RESUMO

Insufficient perfusion of the trophoblast by maternal blood is associated with an increased generation of reactive oxygen species and complications of the placenta. In this study, we first examined whether rosiglitazone, an agonist of the peroxisome proliferator-activated receptor-γ (PPARγ), protects the human trophoblast from oxidative injury by regulating key antioxidant proteins, catalase (CAT) and the superoxide dismutases (SOD1 and SOD2). In first trimester placental explants, localization of CAT was limited to cytotrophoblasts, whereas SOD1 was expressed in both the cyto- and syncytiotrophoblasts. In first trimester placental explants, hypoxia decreased the expression of both SOD1 and SOD2, and increased apoptosis. Treatment with rosiglitazone dose-dependently upregulated anti-oxidative CAT and SOD2, and rescued hypoxic injury in first trimester villous explants and JEG-3 cells, strongly suggesting the involvement of the PPARγ in regulating their expressions. Rosiglitazone facilitated transcription activity of PPARγ, and enhanced promotor binding, increased transcriptional activity at the CAT promoter, and elevated protein expression/activity. Treatment of hypoxic JEG-3 cells with rosiglitazone resulted in mitochondrial membrane potential increase and a reduction of caspase 9 and caspase 3 activity which is consistent with improved cell survival. To complement PPARγ activation data, we also utilized the antagonist (SR-202) and siRNA to suppress PPARγ expression and demonstrate the specific role of PPARγ in reducing ROS and oxidative stress. Ex vivo examination of term human placenta revealed lower expression of antioxidant proteins in pathologic compared to healthy placental tissues, which could be rescued by rosiglitazone, indicating that rosiglitazone can improve survival of the trophoblast under pathological conditions. These findings provide evidence that the PPARγ pathway directly influences cellular antioxidants production and the pathophysiology of placental oxidative stress.


Assuntos
Antioxidantes/farmacologia , Apoptose/fisiologia , Rosiglitazona/farmacologia , Trofoblastos/fisiologia , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Catalase/genética , Catalase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Coriocarcinoma/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias , Placenta/metabolismo , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Técnicas de Cultura de Tecidos
7.
Hum Reprod Update ; 24(4): 484-496, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29608700

RESUMO

BACKGROUND: Early during human development, the trophoblast lineage differentiates to commence placentation. Where the placenta contacts the uterine decidua, extravillous trophoblast (EVT) cells differentiate and invade maternal tissues. EVT cells, identified by expression of HLA-G, invade into uterine blood vessels (endovascular EVT), as well as glands (endoglandular EVT), and open such luminal structures towards the intervillous space of the placenta. Endoglandular invasion diverts the contents of uterine glands to the intervillous space, while glands near the margin of the placenta that also contain endoglandular EVT cells open into the reproductive tract. Cells of the trophoblast lineage have thus been recovered from the uterine cavity and endocervical canal. An emerging non-invasive technology [trophoblast retrieval and isolation from the cervix (TRIC)] isolates and examines EVT cells residing in the cervix to explore their origin, biology and relationship to pregnancy and fetal status. OBJECTIVE AND RATIONALE: This review explores the origins and possible uses of trophoblast cells obtained during ongoing pregnancies (weeks 5-20) by TRIC. We hypothesize that endoglandular EVT cells at the margins of the expanding placenta enter the uterine cavity and are carried together with uterine secretion products to the cervix where they can be retrieved from a Papanicolaou (Pap) smear. The advantages of TRIC for investigation of human placentation and prenatal testing will be considered. Evidence from the literature, and from archived in utero placental histological sections, is presented to support these hypotheses. SEARCH METHODS: We used 52 out of 80 publications that appeared between 1966 and 2017 and were found by searching the PubMed and Google Scholar databases. The studies described trophoblast invasion of uterine vessels and glands, as well as trophoblast cells residing in the reproductive tract. This was supplemented with literature on human placental health and disease. OUTCOMES: The literature describes a variety of invasive routes taken by EVT cells at the fetal-maternal interface that could displace them into the reproductive tract. Since the 1970s, investigators have attempted to recover trophoblast cells from the uterus or cervix for prenatal diagnostics. Trophoblast cells from Pap smears obtained at 5-20 weeks of gestation have been purified (>95% ß-hCG positive) by immunomagnetic isolation with nanoparticles linked to anti-HLA-G (TRIC). The isolated cells contain the fetal genome, and have an EVT-like expression profile. Similar EVT-like cells appear in the lumen of uterine glands and can be observed entering the uterine cavity along the margins of the placenta, suggesting that they are the primary source of cervical trophoblast cells. Cells isolated by TRIC can be used to accurately genotype the embryo/fetus by targeted next-generation sequencing. Biomarker protein expression quantified in cervical trophoblast cells after TRIC correlates with subsequent pregnancy loss, pre-eclampsia and fetal growth restriction. A key remaining question is the degree to which EVT cells in the cervix might differ from those in the basal plate and placental bed. WIDER IMPLICATIONS: TRIC could one day provide a method of risk assessment for maternal and fetal disease, and reveal molecular pathways disrupted during the first trimester in EVT cells associated with placental maldevelopment. As perinatal interventions emerge for pregnancy disorders and inherited congenital disorders, TRIC could provide a key diagnostic tool for personalized precision medicine in obstetrics.


Assuntos
Separação Celular/métodos , Colo do Útero/patologia , Resultado da Gravidez , Diagnóstico Pré-Natal/métodos , Trofoblastos/patologia , Biópsia , Feminino , Humanos , Placenta/patologia , Pré-Eclâmpsia/metabolismo , Valor Preditivo dos Testes , Gravidez , Primeiro Trimestre da Gravidez , Prognóstico , Medição de Risco
8.
Alcohol Clin Exp Res ; 42(1): 53-60, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29048755

RESUMO

BACKGROUND: Maternal alcohol abuse leading to fetal alcohol spectrum disorder (FASD) includes fetal growth restriction (FGR). Ethanol (EtOH) induces apoptosis of human placental trophoblast cells, possibly disrupting placentation and contributing to FGR in FASD. EtOH facilitates apoptosis in several embryonic tissues, including human trophoblasts, by raising intracellular Ca2+ . We previously found that acute EtOH exposure increases trophoblast apoptosis due to signaling from both intracellular and extracellular Ca2+ . Therefore, nifedipine, a Ca2+ channel blocker that is commonly administered to treat preeclampsia and preterm labor, was evaluated for cytoprotective properties in trophoblast cells exposed to alcohol. METHODS: Human first-trimester chorionic villous explants and the human trophoblast cell line HTR-8/SVneo (HTR) were pretreated with 12.5 to 50 nM of the Ca2+ channel blocker nifedipine for 1 hour before exposure to 50 mM EtOH for an additional hour. Intracellular Ca2+ concentrations were monitored in real time by epifluorescence microscopy, using fluo-4-AM. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), accumulation of cytoplasmic cytochrome c, and cleavage rates of caspase 3 and caspase 9. RESULTS: The increase in intracellular Ca2+ upon exposure to EtOH in both villous explants and HTR cells was completely blocked (p < 0.05) when pretreated with nifedipine, accompanied by inhibition of EtOH-induced release of cytochrome c, caspase activities, and TUNEL. CONCLUSIONS: This study indicates that nifedipine can interrupt the apoptotic pathway downstream of EtOH exposure and could provide a novel strategy for future interventions in women with fetuses at risk for FASD.


Assuntos
Apoptose/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Etanol/toxicidade , Nifedipino/farmacologia , Primeiro Trimestre da Gravidez/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos , Apoptose/fisiologia , Cálcio/metabolismo , Linhagem Celular , Feminino , Humanos , Placenta/citologia , Placenta/efeitos dos fármacos , Placenta/fisiologia , Gravidez , Primeiro Trimestre da Gravidez/fisiologia , Trofoblastos/fisiologia
9.
Cell Death Differ ; 24(10): 1772-1783, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28731464

RESUMO

Survival of trophoblast cells in the low oxygen environment of human placentation requires metalloproteinase-mediated shedding of HBEGF and downstream signaling. A matrix metalloproteinase (MMP) antibody array and quantitative RT-PCR revealed upregulation of MMP2 post-transcriptionally in human first trimester HTR-8/SVneo trophoblast cells and placental villous explants exposed to 2% O2. Specific MMP inhibitors established the requirement for MMP2 in HBEGF shedding and upregulation. Because α-amanitin inhibited the upregulation of HBEGF, differentially expressed genes were identified by next-generation sequencing of RNA from trophoblast cells cultured at 2% O2 for 0, 1, 2 and 4 h. Nine genes, all containing HIF-response elements, were upregulated at 1 h, but only HSPA6 (HSP70B') remained elevated at 2-4 h. The HSP70 chaperone inhibitor VER 155008 blocked upregulation of both MMP2 and HBEGF at 2% O2, and increased apoptosis. However, both HBEGF upregulation and apoptosis were rescued by exogenous MMP2. Proximity ligation assays demonstrated interactions between HSP70 and MMP2, and between MMP2 and HBEGF, supporting the concept that MMP2-mediated shedding of HBEGF, initiated by HSP70, contributes to trophoblast survival at the low O2 concentrations encountered during the first trimester, and is essential for successful pregnancy outcomes. Trophoblast survival during human placentation, when oxygenation is minimal, required HSP70 activity, which mediated MMP2 accumulation and the transactivation of anti-apoptotic ERBB signaling by HBEGF shedding.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Trofoblastos/citologia , Linhagem Celular , Movimento Celular , Células Cultivadas , Feminino , Humanos , Placentação , Gravidez , Regulação para Cima
10.
Placenta ; 60 Suppl 1: S27-S31, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28483162

RESUMO

Trophoblast cells are the first embryonic lineage to differentiate during human development, and are needed to sustain fetal life through their role in constructing a placenta. As the fetus grows, the trophoblast rapidly expands and further differentiates to produce an extravillous subtype that invades the maternal tissues. Some of the extravillous trophoblast cells find their way into the reproductive tract, and can be safely captured by noninvasive collection from the endocervical canal, similarly to a Pap smear. We are developing a new technology for investigating trophoblast cells residing in the cervix to better understand their development, and to glean information from them about pregnancy status. Trophoblast retrieval and isolation from the cervix (TRIC) efficiently isolates hundreds of trophoblast cells without limitations due to early gestational age, maternal obesity, or uteroplacental insufficiency disorders. Cells that appear to be extravillous trophoblast, based on their molecular phenotype, can be purified from Pap smears obtained between 5 and 20 weeks of gestation, using magnetic nanoparticles coupled to an antibody recognizing HLA-G that they specifically produce. Information about fetal genotype and adverse pregnancy outcomes has been obtained using TRIC, and could one day provide assessment of maternal and fetal risk of disease. As perinatal interventions for placental disorders and inherited congenital disorders emerge, TRIC could provide a key diagnostic tool for personalize precision pregnancy management.


Assuntos
Placentação , Trofoblastos/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Feminino , Doenças Fetais/diagnóstico , Doenças Fetais/genética , Doenças Fetais/patologia , Doenças Fetais/fisiopatologia , Testes Genéticos , Humanos , Placenta/citologia , Placenta/patologia , Placenta/fisiologia , Placenta/fisiopatologia , Doenças Placentárias/diagnóstico , Doenças Placentárias/genética , Doenças Placentárias/patologia , Doenças Placentárias/fisiopatologia , Pré-Eclâmpsia/patologia , Pré-Eclâmpsia/fisiopatologia , Gravidez , Diagnóstico Pré-Natal , Trofoblastos/citologia , Trofoblastos/patologia
11.
Hum Reprod ; 32(6): 1218-1229, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28402449

RESUMO

STUDY QUESTION: Does low molecular weight heparin (LMWH) require heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF) signaling to induce extravillous trophoblast differentiation and decrease apoptosis during oxidative stress? SUMMARY ANSWER: LMWH increased HBEGF expression and secretion, and HBEGF signaling was required to stimulate trophoblast extravillous differentiation, increase invasion in vitro and reduce trophoblast apoptosis during oxidative stress. WHAT IS KNOWN ALREADY: Abnormal trophoblast differentiation and survival contribute to placental insufficiency syndromes, including preeclampsia and intrauterine growth restriction. Preeclampsia often manifests as a pro-thrombotic state, with unsuccessful transformation of the spiral arteries that reduces oxygen supply and can produce placental infarction. LMWH improves placental function by increasing blood flow. Recent data suggest that the actions of LMWH transcend its anti-coagulative properties, but the molecular mechanism is unknown. There is evidence that LMWH alters the expression of human HBEGF in trophoblast cells, which regulates human trophoblast pathophysiology. HBEGF, itself, is capable of increasing trophoblast survival and invasiveness. STUDY DESIGN, SIZE, DURATION: First-trimester placental explants and the HTR-8/SVneo cell line, established using extravillous trophoblast outgrowths from first-trimester villous explants, were treated in vitro with LMWH to examine the effects on HBEGF signaling and trophoblast function under normal physiological and pathological conditions. A highly specific antagonist of HBEGF and other inhibitors of HBEGF downstream signaling were used to determine the relationship between LMWH treatment and HBEGF. PARTICIPANTS/MATERIALS, SETTING, METHODS: Placental tissues (n = 5) were obtained with IRB approval and patient consent from first-trimester terminations. Placental explants and HTR-8/SVneo cells were cultured on plastic or Matrigel™ and treated with a therapeutic dose of LMWH (Enoxaparin; 10 IU/ml), with or without CRM197, pan Erb-B2 Receptor Tyrosine Kinase (ERBB) inhibitor, anti-ERBB1 or ERBB4 blocking antibodies, or pretreatment of cells with heparitinase I. Extravillous differentiation was assessed by immunocytochemistry to determine the relative levels of integrins α6ß4 and α1ß1. Trophoblast invasiveness was assessed in villous explants by measuring outgrowth from villous tips cultured on Matrigel, and by invasion assays with HTR-8/SVneo cells cultured on Matrigel-coated transwell insert. Placental explants and HTR-8/SVneo cells were exposed to oxidative stress in a hypoxia-reoxygenation (H-R) model, measuring cell death by TUNEL assay, caspase 3 cleavage, and BCL-2α expression. MAIN RESULTS AND THE ROLE OF CHANCE: LMWH induced extravillous differentiation, according to trophoblast invasion assays and integrin (α6ß4-α1ß1) switching. Treatment with LMWH rescued cytotrophoblasts and HTR-8/SVneo cells from apoptosis during exposure to reoxygenation injury, based on TUNEL, caspase 3 cleavage and BCL-2α expression. Experiments using CRM197, ERBB1 and ERBB4 blocking antibodies, pan-ERBB inhibitor and removal of cell surface heparin demonstrated that the effects of LMWH on trophoblast invasion and survival were dependent upon HBEGF signaling. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: The primary limitation of this study was the use of only in vitro experiments. Patient demographics from elective terminations were not available. WIDER IMPLICATIONS OF THE FINDINGS: These data provide new insights into the non-coagulation-related aspects of perinatal LMWH treatment in the management of placental insufficiency disorders. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by grants from the National Institutes of Health (HD071408 and HL128628), the March of Dimes, and the W. K. Kellogg Foundation. There were no conflicts or competing interests.


Assuntos
Anticoagulantes/farmacologia , Apoptose/efeitos dos fármacos , Enoxaparina/farmacologia , Fibrinolíticos/farmacologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos , Aborto Induzido , Anticorpos Bloqueadores/farmacologia , Anticoagulantes/química , Anticoagulantes/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Enoxaparina/antagonistas & inibidores , Enoxaparina/metabolismo , Feminino , Fibrinolíticos/química , Fibrinolíticos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/química , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Placenta/citologia , Placenta/efeitos dos fármacos , Placenta/metabolismo , Polissacarídeo-Liases/farmacologia , Gravidez , Inibidores de Proteínas Quinases/farmacologia , Técnicas de Cultura de Tecidos , Trofoblastos/citologia , Trofoblastos/metabolismo
12.
Sci Transl Med ; 8(363): 363re4, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27807286

RESUMO

Single-gene mutations account for more than 6000 diseases, 10% of all pediatric hospital admissions, and 20% of infant deaths. Down syndrome and other aneuploidies occur in more than 0.2% of births worldwide and are on the rise because of advanced reproductive age. Birth defects of genetic origin can be diagnosed in utero after invasive extraction of fetal tissues. Noninvasive testing with circulating cell-free fetal DNA is limited by a low fetal DNA fraction. Both modalities are unavailable until the end of the first trimester. We have isolated intact trophoblast cells from Papanicolaou smears collected noninvasively at 5 to 19 weeks of gestation for next-generation sequencing of fetal DNA. Consecutive matched maternal, placental, and fetal samples (n = 20) were profiled by multiplex targeted DNA sequencing of 59 short tandem repeat and 94 single-nucleotide variant sites across all 24 chromosomes. The data revealed fetal DNA fractions of 85 to 99.9%, with 100% correct fetal haplotyping. This noninvasive platform has the potential to provide comprehensive fetal genomic profiling as early as 5 weeks of gestation.


Assuntos
Feto/patologia , Mutação , Diagnóstico Pré-Natal/métodos , Trofoblastos/citologia , Ácidos Nucleicos Livres/análise , Análise Mutacional de DNA , Feminino , Genótipo , Idade Gestacional , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Repetições de Microssatélites , Placenta/metabolismo , Polimorfismo de Nucleotídeo Único , Gravidez , Primeiro Trimestre da Gravidez , Cuidado Pré-Natal
13.
PLoS One ; 11(10): e0163913, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27701455

RESUMO

INTRODUCTION: The growth factor HBEGF is upregulated post-transcriptionally in the low O2 environment of the human placenta during the first 10 weeks of pregnancy. We have examined the possible roles of HBEGF turnover and micro-RNA (miRNA) in its regulation by O2 in human first trimester trophoblast. METHODS: HTR-8/SVneo trophoblast cells were cultured at 2% or 20% O2. The cells were transfected with a dual luciferase reporter construct (psiCHECK-2) containing no insert (control), the HBEGF 3' untranslated region (3'UTR), or sub-regions of the 3'UTR, as well as with siRNA for DGCR8. RNA was extracted from trophoblast cells cultured at 2% O2 for 0-4 h for next-generation sequencing. HBEGF was quantified by ELISA. HBEGF, DGCR8, and ß-actin were examined by western blotting. RESULTS: Protein turnover studies, using 10 µg/ml cyclohexamide, 1 µg/ml lactocystin, or 100 µg/ml MG132, demonstrated faster HBEGF degradation at 20% O2 than 2% O2, mediated by the proteasome. However, proteasome inhibition failed to initiate HBEGF accumulation at 20% O2. Reporter assays, comparing to empty vector, demonstrated that the intact HBEGF 3' UTR inhibited expression (0.26), while fragments containing only its flanking regions increased reporter activity (3.15; 3.43). No differential expression of miRNAs was found in trophoblast cells cultured at 2% and 20% O2. Nevertheless, HBEGF upregulation at 2% O2 was blocked when the miRNA-processing protein DGCR8 was silenced, suggesting a role for miRNA. CONCLUSION: Our findings suggest involvement of flanking regions of the 3'UTR in activating HBEGF protein synthesis in response to 2% O2, possibly through a miRNA-mediated mechanism.


Assuntos
Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Oxigênio/farmacologia , Análise de Sequência de RNA/métodos , Trofoblastos/citologia , Actinas/metabolismo , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Humanos , MicroRNAs , Gravidez , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo
14.
Sci Rep ; 6: 32382, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27660926

RESUMO

A contributing factor to poor placental perfusion, leading to intrauterine growth restriction and preeclampsia, is the failure of invading extravillous trophoblast (EVT) cells to remodel the maternal uterine arteries during the first and second trimesters of pregnancy. Noninvasive assessment of EVT cells in ongoing pregnancies is possible beginning three weeks after conception, using trophoblast retrieval and isolation from the cervix (TRIC). Seven proteins were semi-quantified by immunofluorescence microscopy in EVT cells obtained between gestational weeks 6 and 20 from pregnancies with normal outcomes (N = 29) and those with intrauterine growth restriction or preeclampsia (N = 12). Significant differences were measured in expression of PAPPA, FLT1, ENG, AFP, PGF, and LGALS14, but not LGALS13 or the lineage marker KRT7. These findings provide for the first time direct evidence of pathology-associated protein dysregulation in EVT cells during early placentation. The TRIC platform provides a novel approach to acquire molecular signatures of EVT cells that can be correlated with pregnancy outcome.

15.
Hum Reprod ; 31(9): 2042-50, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27312535

RESUMO

STUDY QUESTION: Is protein expression of the muscle segment homeobox gene family member MSX1 altered in the human secretory endometrium by cell type, developmental stage or fertility? SUMMARY ANSWER: MSX1 protein levels, normally elevated in the secretory phase endometrium, were significantly reduced in endometrial biopsies obtained from women of infertile couples. WHAT IS KNOWN ALREADY: Molecular changes in the endometrium are important for fertility in both animals and humans. Msx1 is expressed in the preimplantation mouse uterus and regulates uterine receptivity for implantation. The MSX protein persists a short time, after its message has been down-regulated. Microarray analysis of the human endometrium reveals a similar pattern of MSX1 mRNA expression that peaks before the receptive period, with depressed expression at implantation. Targeted deletion of uterine Msx1 and Msx2 in mice prevents the loss of epithelial cell polarity during implantation and causes infertility. STUDY DESIGN, SIZE DURATION: MSX1 mRNA and cell type-specific levels of MSX1 protein were quantified from two retrospective cohorts during the human endometrial cycle. MSX1 protein expression patterns were compared between fertile and infertile couples. Selected samples were dual-labeled by immunofluorescence microscopy to localize E-cadherin and ß-catenin in epithelial cells. PARTICIPANTS/MATERIALS, SETTING METHODS: MSX1 mRNA was quantified by PCR in endometrium from hysterectomies (n = 14) determined by endometrial dating to be in the late-proliferative (cycle days 10-13), early-secretory (cycle days 14-19) or mid-secretory (cycle days 20-24) phase. MSX1 protein was localized using high-throughput, semi-quantitative immunohistochemistry with sectioned endometrial biopsy tissues from fertile (n = 89) and infertile (n = 89) couples. Image analysis measured stain intensity specifically within the luminal epithelium, glands and stroma during the early-, mid- and late- (cycle days 25-28) secretory phases. MAIN RESULTS AND THE ROLE OF CHANCE: MSX1 transcript increased 5-fold (P < 0.05) between the late-proliferative and early secretory phase and was then down-regulated (P < 0.05) prior to receptivity for implantation. In fertile patients, MSX1 protein displayed strong nuclear localization in the luminal epithelium and glands, while it was weakly expressed in nuclei of the stroma. MSX1 protein levels accumulated throughout the secretory phase in all endometrial cellular compartments. MSX1 protein decreased (P < 0.05) in the glands between mid- and late-secretory phases. However, infertile patients demonstrated a broad reduction (P < 0.001) of MSX1 accumulation in all cell types throughout the secretory phase that was most pronounced (∼3-fold) in stroma and glands. Infertility was associated with persistent co-localization of E-cadherin and ß-catenin in epithelial cell junctions in the mid- and late-secretory phases. LIMITATIONS, REASONS FOR CAUTION: Details of the infertility diagnoses and other patient demographic data were not available. Therefore, patients with uterine abnormalities (Mullerian) could not be distinguished from other sources of infertility. Antibody against human MSX2 is not available, limiting the study to MSX1. However, both RNAs in the human endometrium are similarly regulated. In mice, Msx1 and Msx2 are imperative for murine embryo implantation, with Msx2 compensating for genetic ablation of Msx1 through its up-regulation in a knockout model. WIDER IMPLICATIONS OF THE FINDINGS: This investigation establishes that the MSX1 homeobox protein accumulation is associated with the secretory phase in endometrium of fertile couples, and is widely disrupted in infertile patients. It is the first study to examine MSX1 protein localization in the human endometrium, and supported by genetic findings in mice, suggests that genes regulated by MSX1 are linked to the loss of epithelial cell polarity required for uterine receptivity during implantation. STUDY FUNDING/COMPETING INTERESTS: This research was supported by the NICHD National Cooperative Reproductive Medicine Network grant HD039005 (M.P.D.), NIH grants HD068524 (S.K.D.), HD071408 (D.R.A., M.P.D.), and HL128628 (S.D.), the Intramural Research Program of the NICHD, March of Dimes (S.K.D., S.D.) and JSPS KAKENHI grant 26112506 (Y.H.). There were no conflicts or competing interests.


Assuntos
Regulação para Baixo , Endométrio/metabolismo , Infertilidade Feminina/genética , Fator de Transcrição MSX1/genética , Ciclo Menstrual/genética , Adulto , Células Epiteliais/metabolismo , Feminino , Fertilidade/fisiologia , Humanos , Infertilidade Feminina/metabolismo , Fator de Transcrição MSX1/metabolismo , Ciclo Menstrual/metabolismo , Pessoa de Meia-Idade , Estudos Retrospectivos
16.
Reprod Sci ; 23(6): 717-22, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26919977

RESUMO

Congenital adrenal hyperplasia (CAH) is an autosomal recessive defect in cortisol biosynthesis that elevates fetal androgen levels to cause genital ambiguity and external genital masculinization in newborn females. Introducing dexamethasone in utero by 7 weeks gestation precludes virilization of affected females. However, identification of a male fetus prior to week 7 could avert the necessity of steroid treatment in half of pregnancies at risk of CAH. We recently introduced trophoblast retrieval and isolation from the cervix (TRIC), an approach that noninvasively isolate homogeneous trophoblast cells from pregnant women as early as 5 weeks gestation, using a Papanicolaou test. Here, we have used TRIC to correctly identify male fetal DNA when both parents were carriers of the mutation that produces CAH and previously produced an affected child. Trophoblast cells (1400) obtained by TRIC were assessed using immunocytochemistry with an antibody against the trophoblast-specific ß subunit of human chorionic gonadotropin, which labeled 100% (17 of 17) of isolated cells, while none of the excluded maternal cervical cells were labeled. The isolated cells were examined by fluorescent in situ hybridization for chromosomes 18, X, and Y at a clinical cytogenetics laboratory, demonstrating 100% (18 of 18) of cells to be diploid 18/XY. Aliquots of DNA obtained from the isolated cells assayed for SRY and RNASEH genes by TaqMan assays confirmed a male fetus. This case study demonstrates the utility of TRIC to accurately identify fetal gender as a means of reducing the need for prophylactic administration of exogenous steroids in pregnancies at risk of CAH.


Assuntos
Hiperplasia Suprarrenal Congênita/genética , Colo do Útero/citologia , Diagnóstico Pré-Natal/métodos , Análise para Determinação do Sexo/métodos , Trofoblastos/metabolismo , Hiperplasia Suprarrenal Congênita/complicações , Cromossomos Humanos Par 18/genética , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Feminino , Testes Genéticos , Genótipo , Humanos , Masculino , Gravidez , Primeiro Trimestre da Gravidez
17.
Cell Adh Migr ; 10(1-2): 126-35, 2016 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-26745760

RESUMO

The proper establishment and organogenesis of the placenta is crucial for intrauterine fetal growth and development. Endometrial invasion by the extravillous trophoblast cells, as well as formation of the syncytiotrophoblast (STB), are of vital importance for placental function. Trophoblast migration and invasion is often compared to tumor metastasis, which uses many of the same molecular mechanisms. However, unlike cancer cells, both initiation and the extent of trophoblast invasion are tightly regulated by feto-maternal cross-talk, which when perturbed, results in a wide range of abnormalities. Multiple factors control the trophoblast, including cytokines and hormones, which are subject to transcriptional regulatory networks. The relevance of epigenetics in transcriptional regulation of trophoblast differentiation and invasion, as well as in the onset of placenta-related pregnancy disorders, became recognized decades ago. Although, there has been tremendous progress in uncovering the molecular foundation of placental development, there is still much to be learned about the epigenetic machinery, and its role in trophoblast differentiation and invasion. This review will provide an overview of the epigenetic control of trophoblast differentiation and invasion. It will also highlight the major epigenetic mechanisms involved in pregnancy complications related to placental deficiencies.


Assuntos
Diferenciação Celular/genética , Movimento Celular/genética , Epigênese Genética , Trofoblastos/patologia , Feminino , Histonas/metabolismo , Humanos , Gravidez , Processamento de Proteína Pós-Traducional , Trofoblastos/metabolismo
18.
Biol Reprod ; 93(3): 74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26246219

RESUMO

During the first trimester of pregnancy, appropriate regulation of estradiol (E2) is essential for normal placental development. Previous studies demonstrate that premature elevation in E2 concentrations can lead to abnormal placentation, but have not fully elaborated the mechanism of this effect in the first-trimester trophoblast. Our aim was to determine whether E2 elicits trophoblast cell death or inhibits proliferation. The first-trimester human cytotrophoblast cell line HTR-8/SVneo was cultured in phenol red-free medium containing charcoal-stripped serum and treated with 17beta-E2 at concentrations between 0 and 100 nM. TUNEL and invasion assays indicated that E2 significantly increased cell death and reduced cell invasion at 10 nM, and nuclear Ki67 expression revealed that it decreased cell proliferation at 1 nM. A similar effect on cell death was observed in first-trimester placental explants. The E2 antagonist fulvestrant blocked all effects of E2. Immunohistochemistry showed that protein expression of proapoptotic caspases 3, 8, and 9 increased at E2 concentrations of 25 nM and greater, whereas expression of antiapoptotic BCL2-alpha decreased at E2 concentrations of 10 nM and greater. Additionally, treatments with estrogen receptor (ER) alpha-specific and ERbeta-specific agonists at concentrations between 0 and 1000 nM indicated that only ERalpha mediates E2's effects, although immunohistochemistry and Western immunoblotting showed that HTR-8/SVneo cells and placental explants express both ERalpha and ERbeta. Taken together, these findings reveal the interplay between elevated serum E2 and apoptosis in the first trimester of pregnancy. These factors could be associated with pregnancy complications including infertility and uteroplacental insufficiency.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Estradiol/farmacologia , Trofoblastos/efeitos dos fármacos , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/efeitos dos fármacos , Feminino , Humanos , Antígeno Ki-67/metabolismo , Gravidez , Primeiro Trimestre da Gravidez
19.
Prenat Diagn ; 35(12): 1218-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26288006

RESUMO

OBJECTIVE: The objective of this study is to evaluate whether trophoblast yield obtained by trophoblast retrieval and isolation from the cervix (TRIC) is affected by pregnancy outcome, gestational age (GA) at retrieval, maternal body mass index (BMI), parity, or maternal age. METHODS: TRIC was performed on 224 ongoing pregnancies between 5 and 20 weeks of GA. Trophoblast cells were isolated from cervical cells using anti-human leukocyte antigen-G antibody coupled to magnetic nanoparticles. Purity was assessed by the percentage of isolated cells that express ß-hCG. Patient records were monitored until delivery, and pregnancy outcomes were determined. Trophoblast yield was compared with GA at time of collection, maternal BMI, parity, maternal age, and outcome of pregnancy, using linear regression. RESULTS: There was no effect of GA, maternal BMI, parity, and maternal age on trophoblast yield. Trophoblast yield decreased significantly with early pregnancy loss compared with uncomplicated pregnancies that delivered at term. Trophoblast yield with preeclampsia or intrauterine growth restriction was decreased compared with healthy term outcomes; however, they did not reach statistical significance. CONCLUSIONS: If TRIC becomes available as a method for non-invasive prenatal testing, our data demonstrate that it is unaffected by BMI and is useful as early as 5 weeks of GA.


Assuntos
Obesidade/patologia , Complicações na Gravidez/patologia , Diagnóstico Pré-Natal/métodos , Trofoblastos/patologia , Adulto , Feminino , Idade Gestacional , Humanos , Gravidez , Estudos Prospectivos , Adulto Jovem
20.
Fertil Steril ; 104(2): 339-46.e4, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26051097

RESUMO

OBJECTIVE: To examine the expression pattern of biomarker proteins in extravillous trophoblast (EVT) cells obtained noninvasively by trophoblast retrieval and isolation from the cervix (TRIC) in patients with early pregnancy loss compared with control patients with uncomplicated term delivery. DESIGN: Case-control study. SETTING: Academic medical center. PATIENT(S): Women with either early pregnancy loss (EPL, n = 10) or an uncomplicated term delivery (N = 10). INTERVENTION(S): Endocervical specimens obtained from ongoing pregnancies at gestational ages of 5-10 weeks to generate an archive of EVT cells isolated by TRIC, with medical records examined to select specimens matched for gestational age at the time of endocervical sampling. MAIN OUTCOME MEASURE(S): Known serum biomarkers for adverse pregnancy outcome that are expressed by EVT cells were evaluated by semiquantitative immunocytochemistry, using antibodies against endoglin (ENG), FMS-like tyrosine kinase-1 (FLT-1), α-fetoprotein (AFP), pregnancy-associated plasma protein-A (PAPP-A), galectin-13 (LGALS13), galectin-14 (LGALS14), and placental growth factor (PGF). RESULT(S): The EVT purity was over 95% in all specimens, based on chorionic gonadotropin expression; however, the number of EVT cells obtained was significantly lower in women with EPL than the control group. There was a statistically significant elevation of AFP, ENG, and FLT-1, and statistically significant reduction of PAPP-A, LGALS14, and PGF in the EPL group compared with controls. CONCLUSION(S): In this pilot study, EVT cells isolated by TRIC early in gestation exhibited altered protein expression patterns before an EPL compared with uncomplicated term pregnancies.


Assuntos
Aborto Espontâneo/diagnóstico por imagem , Aborto Espontâneo/metabolismo , Colo do Útero/diagnóstico por imagem , Colo do Útero/metabolismo , Trofoblastos/metabolismo , Adulto , Biomarcadores/metabolismo , Estudos de Casos e Controles , Colo do Útero/citologia , Estudos de Coortes , Feminino , Humanos , Projetos Piloto , Gravidez , Fatores de Tempo , Ultrassonografia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Adulto Jovem , alfa-Fetoproteínas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...